📢 Gate廣場獨家活動: #PUBLIC创作大赛# 正式開啓!
參與 Gate Launchpool 第 297 期 — PublicAI (PUBLIC),並在 Gate廣場發布你的原創內容,即有機會瓜分 4,000 枚 $PUBLIC 獎勵池!
🎨 活動時間
2025年8月18日 10:00 – 2025年8月22日 16:00 (UTC)
📌 參與方式
在 Gate廣場發布與 PublicAI (PUBLIC) 或當前 Launchpool 活動相關的原創內容
內容需不少於 100 字(可爲分析、教程、創意圖文、測評等)
添加話題: #PUBLIC创作大赛#
帖子需附帶 Launchpool 參與截圖(如質押記錄、領取頁面等)
🏆 獎勵設置(總計 4,000 枚 $PUBLIC)
🥇 一等獎(1名):1,500 $PUBLIC
🥈 二等獎(3名):每人 500 $PUBLIC
🥉 三等獎(5名):每人 200 $PUBLIC
📋 評選標準
內容質量(相關性、清晰度、創意性)
互動熱度(點讚、評論)
含有 Launchpool 參與截圖的帖子將優先考慮
📄 注意事項
所有內容須爲原創,嚴禁抄襲或虛假互動
獲獎用戶需完成 Gate廣場實名認證
Gate 保留本次活動的最終解釋權
AI大模型裡的不平等:漢語訓練費用是英語的2倍!
來源:Ifanr
作者:莫崇宇
近日,X(原Twitter)用戶@Dylan Patel 展示了一份來自牛津大學的研究:通過對GPT-4 和大多數其他常見LLM 的語言進行研究,研究發現LLM(大語言模型)推理的成本差異很大。
其中英語輸入和輸出要比其他語言便宜得多,簡體中文的成本大約是英語的2 倍,西班牙語的成本是英語的1.5 倍,而緬甸撣語則是英語的15 倍。
究其原理,可以追溯到今年5 月份牛津大學在arXiv 上刊印的一篇的論文。
毫無疑問,在生成式AI 商業化的趨勢下,計算力的耗費成本也會嫁接給用戶,當下許多AI 服務也正是按照需要處理的詞元數量來計費。
論文顯示,研究者通過分析17 種詞元化方法後,發現同一文本被轉換成不同語言詞元序列時長度差異巨大,即使是宣稱支持多語言的詞元化方法,也無法做到詞元序列長度完全公平。
例如,根據OpenAI 的GPT3 tokenizer,倘若給「你的愛意」詞元化,英語只需兩個詞元,而在簡體中文中則需要八個詞元。即使簡體中文文本只有4 個字符,而英文文本有14 個字符。
類似的情況也有很多,Aleksandar Petrov 的網站中提供了許多相關的圖標和數據,感興趣的朋友不妨點擊「進去查看語言之間的差異。
在OpenAI 的官網上也有著類似的頁面,解釋了API 是如何對一段文本進行詞元化,以及顯示該文本的詞元總數。官網也提到,一個詞元通常對應英語文本的約4 個字符,100 個詞元約等於75 個單詞。
除此之外,這種詞元序列長度的差異也會導致處理延遲不公平(某些語言處理同樣內容需要更多時間)和長序列依賴性建模不公平(部分語言只能處理更短的文本)。
簡單點理解,就是某些語言的用戶需要支付更高的成本,承受更大的延遲,獲得更差的性能,從而降低了他們公平地訪問語言技術的機會,也就間接導致了英語使用者和世界其他語言使用之間形成了AI 鴻溝。
僅從輸出的成本來看,簡體中文的成本是英語的兩倍。伴隨著AI 領域的深層次發展,總是「差一步」的簡體中文顯然並不友好。在成本等各方面疊加因素的權衡下,非英語母語的國家也紛紛嘗試開發自己的母語語言大模型。
隨後阿里巴巴的通義千問大模型、華為的盤古大模型等一批批優秀大模型也陸續湧現出來。
在這當中,華為盤古大模型中的NLP 大模型更是行業內首個千億參數中文大模型,擁有1100 億密集參數,經過40TB 的海量數據訓練而成。
正如聯合國常務副秘書長阿米娜·穆罕默德曾經在聯合國大會上警告說,如果國際社會不採取果斷行動,數字鴻溝將成為「不平等的新面孔」。
同理,伴隨著生成式AI 的狂飆突進,AI 鴻溝也很有可能成為新一輪值得關注的「不平等的新面孔」。
所幸的是,平時「慘遭嫌棄」的國內的科技巨頭已然採取了行動。